Functional interaction between TATA and upstream CACGTG elements regulates the temporally specific expression of Otx mRNAs during early embryogenesis of the sea urchin, Hemicentrotus pulcherrimus.

نویسندگان

  • Akiko Kobayashi
  • Koji Akasaka
  • Masashi Kawaichi
  • Tetsuro Kokubo
چکیده

The orthodenticle-related protein (HpOtx) gene derived from the sea urchin Hemicentrotus pulcherrimus encodes two distinct isoforms, HpOtxE and HpOtxL, which are differentially expressed during early embryogenesis and are driven by TATA-less and TATA-containing promoters, respectively. In order to determine if the TATA element is involved in the establishment of the temporally specific expression profile of the HpOtx gene, reporter genes under the control of modified or wild-type HpOtxE/L promoters were introduced into fertilized eggs. When the activities of the different promoter constructs were examined, we found that deletion of the TATA element from the HpOtxL promoter causes early expression, whereas addition of the TATA element to the HpOtxE promoter causes delayed expression. This suppressive action of the TATA element on transcription from the HpOtxE/L promoters requires the presence of upstream CACGTG elements. These results indicate that the presence or absence of the TATA element determines, at least in part, the expression profile of the HpOtxE/L promoters, in concert with the transcription factor(s) that binds to the upstream CACGTG element. Immunoblot and gel retardation analyses suggest that functional interaction between CACGTG binding factor(s) and TATA factor(s) may be regulated by an unidentified third factor(s) during early embryogenesis in the sea urchin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time monitoring of functional interactions between upstream and core promoter sequences in living cells of sea urchin embryos

There are some functional compatibilities between upstream and core promoter sequences for transcriptional activation in yeast, Drosophila and mammalian cells. Here we examined whether similar compatibilities exist in sea urchin embryos, and if so, whether they are dynamically regulated during early development. Two reporter plasmids, each containing a test promoter conjugated to either CFP or ...

متن کامل

Analysis of cis-regulatory elements controlling spatio-temporal expression of T-brain gene in sea urchin, Hemicentrotus pulcherrimus

In sea urchin development, micromere descendants play important roles in skeletogenesis and induction of gastrulation. We previously reported that the T-brain homolog of sea urchin Hemicentrotus pulcherrimus, HpTb expresses specifically in micromere descendants and is required for induction of gastrulation and skeletogenesis. Thus, HpTb is thought to play important roles in the function of micr...

متن کامل

Ca2+ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral–aboral axis formation in early sea urchin embryos

Sea urchin embryos initiate cell specifications at the 16-cell stage by forming the mesomeres, macromeres and micromeres according to the relative position of the cells in the animal-vegetal axis. The most vegetal cells, micromeres, autonomously differentiate into skeletons and induce the neighbouring macromere cells to become mesoendoderm in the β-catenin-dependent Wnt8 signalling pathway. Alt...

متن کامل

Nucleotide sequence of the proton ATPase beta-subunit homologue of the sea urchin Hemicentrotus pulcherrimus.

A cDNA with 2.3 kb encoding F1-F0 ATP synthase (proton ATPase) beta-subunit homologue was isolated from a testis cDNA library of the sea urchin, Hemicentrotus pulcherrimus. The deduced amino acid sequence consisted of 523 residues which contained a 19-residue amino-terminal signal peptide and a 8-residue glycine-rich consensus sequences. Analysis of poly(A) +RNA and/or total RNA from H. pulcher...

متن کامل

The 3'UTR of nanos2 directs enrichment in the germ cell lineage of the sea urchin.

Nanos is a translational regulator required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus (Sp), and each nanos mRNA accumulates specifically in the small micromere (sMic) lineage. We found that a highly conserved element in the 3' UTR of nanos2 is sufficient for repor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 30 14  شماره 

صفحات  -

تاریخ انتشار 2002